Role of Alpha-actinin-3 in Contractile Properties of Human Single Muscle Fibers: A Case Series Study in Paraplegics
نویسندگان
چکیده
A common nonsense polymorphism in the ACTN3 gene results in the absence of α-actinin-3 in XX individuals. The wild type allele has been associated with power athlete status and an increased force output in numeral studies, though the mechanisms by which these effects occur are unclear. Recent findings in the Actn3(-/-) (KO) mouse suggest a shift towards 'slow' metabolic and contractile characteristics of fast muscle fibers lacking α-actinin-3. Skinned single fibers from the quadriceps muscle of three men with spinal cord injury (SCI) were tested regarding peak force, unloaded shortening velocity, force-velocity relationship, passive tension and calcium sensitivity. The SCI condition induces an 'equal environment condition' what makes these subjects ideal to study the role of α-actinin-3 on fiber type expression and single muscle fiber contractile properties. Genotyping for ACTN3 revealed that the three subjects were XX, RX and RR carriers, respectively. The XX carrier's biopsy was the only one that presented type I fibers with a complete lack of type II(x) fibers. Properties of hybrid type II(a)/II(x) fibers were compared between the three subjects. Absence of α-actinin-3 resulted in less stiff type II(a)/II(x) fibers. The heterozygote (RX) exhibited the highest fiber diameter (0.121±0.005 mm) and CSA (0.012±0.001 mm(2)) and, as a consequence, the highest peak force (2.11±0.14 mN). Normalized peak force was similar in all three subjects (P = 0.75). Unloaded shortening velocity was highest in R-allele carriers (P<0.001). No difference was found in calcium sensitivity. The preservation of type I fibers and the absence of type II(x) fibers in the XX individual indicate a restricted transformation of the muscle fiber composition to type II fibers in response to long-term muscle disuse. Lack of α-actinin-3 may decrease unloaded shortening velocity and increase fiber elasticity.
منابع مشابه
A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse.
The actin-binding protein alpha-actinin-3 is one of the two isoforms of alpha-actinin that are found in the Z-discs of skeletal muscle. alpha-Actinin-3 is exclusively expressed in fast glycolytic muscle fibers. Homozygosity for a common polymorphism in the ACTN3 gene results in complete deficiency of alpha-actinin-3 in about 1 billion individuals worldwide. Recent genetic studies suggest that t...
متن کاملContractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury.
The purpose of this study was to evaluate the integrity of the muscle membrane and its associated cytoskeleton after a contraction-induced injury. A single eccentric contraction was performed in vivo on the tibialis anterior (TA) of male Sprague-Dawley rats at 900 degrees /s throughout a 90 degrees -arc of motion. Maximal tetanic tension (Po) of the TAs was assessed immediately and at 3, 7, and...
متن کاملCorneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins.
PURPOSE Recent studies of corneal wound healing suggest that activated corneal keratocytes develop myofibroblast-like characteristics including a putative contractile apparatus comprised, in part, of intracellular microfilament bundles (i.e., stress fibers) containing f-actin, myosin, and alpha-actinin; extracellular fibronectin fibrils; and fibronectin surface membrane receptors (alpha 5 beta ...
متن کاملMyofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin
Fluorescently labeled alpha-actinin, isolated from chicken gizzards, breast muscle, or calf brains, was microinjected into cultured embryonic myotubes and cardiac myocytes where it was incorporated into the Z-bands of myofibrils. The localization in injected, living cells was confirmed by reacting permeabilized myotubes and cardiac myocytes with fluorescent alpha-actinin. Both living and permea...
متن کاملTransversal Stiffness and Beta-Actin and Alpha-Actinin-4 Content of the M. Soleus Fibers in the Conditions of a 3-Day Reloading after 14-Day Gravitational Unloading
The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that afte...
متن کامل